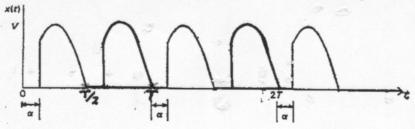
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

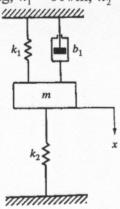


ECEN 3723 Systems I Spring 2001 Final Exam

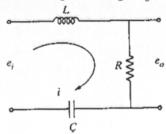
1)	2)	3)	4)
Name :			
Student ID: _			

Problem 1: (Laplace Transform)
Determine the Laplace transform of the following signal, x(t), with five periods shown below.

Problem 2: (z Transform)

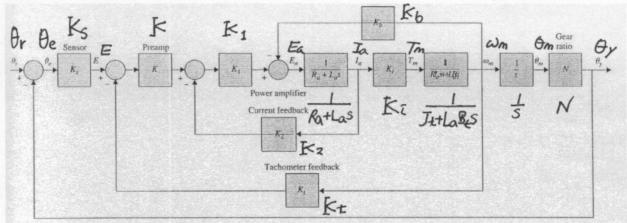

A linear time-invariant discrete-time system is given by the input/output difference equation y(k) + y(k-1) - 2y(k-2) = 2x(k) - x(k-1).

Find an input x(k) with x(k) = 0, k < 0 that gives the output response


$$y(k) = 2(u(k) - u(k-3))$$
 with initial conditions $y[-2] = 2$, $y[-1] = 0$.

Problem 3: (Time Response)

Consider the mechanical system shown below. Determine the response function x(t) versus t when mass m is pulled slightly downward, generating the initial conditions x(0) = 0.05 m and $\dot{x}(0) = 1$ m/s. The displacement x is measured from the equilibrium position before mass m is pulled downward. Assume that m = 1 kg, $k_1 = 6$ N/m, $k_2 = 10$ N/m, $k_1 = 4$ N-s/m.



Problem 4: (Frequency Response)
Consider the electrical circuits shown beloew. Assume that the input is sinusoidal, $e_i(t) = E_i \cos \omega t$, what is the steady state output voltage $e_o(t)$?

Problem 5: (Block Diagram Reduction)

Find the closed-loop transfer function of an aircraft system shown below, $\frac{\Theta_y(s)}{\Theta_r(s)}$.

